
Kinetic Data Structures 1

🌁
Kinetic Data Structures
Given a number of objects and a Flight Path, i.e. an algebraic function defining the
position of an object in time, for each object, the purpouse of a Kinetic Data structure is
to define an attribute, like a kd-tree, a bounding box, a BSP Tree and so on.

everything that describes the attribute except concrete
coordinates is called a Combinatorial structure. for
example if we are trying to compute the bounding box of a
set of point in space we can take the pointer of the points
representing maximum and minimum coordinates for the
bounding box

when something changes in the combinatorial structure we obtain a Combinatorial
change. as example, the points exchanging the status of “more far away”

we can define a Certificate, being a simple geometric relation, or predicate, involving
a few of the objects contained in the Kinetic data structure, in practice a condition to be
respected.

if in a specific point in time one of the certificates fails, meaning that the condition is not
respected anymore, we obtain an Event. In this case we have to do something. events
are divided in:

Kinetic Data Structures 2

External Events: something changes in the combinatorial structure

Internal events: The certificates of a combinatorial structure changes

finally we can say that a Kinetic Data Structure for a geometric attribute is a set of
certificates that is true whenever the combinatorial structure of the attribute is valid and
a set of rules and algorithms for repairing the attributes and the set of certificates in
case of an event

Main loop

initialize the attribute for the input objects
initialize the set of certificates
compute all events (failure times) of all certificates
 (usually only up to some time in the future)
initialize the p-queue for all events, sorted by failure time
loop forever:
 do computations using KDS ...
 update time tnew := told + deltat
 while timestamp (front event in queue) <= tnew:
 pop front event from the event queue
 if external event:
 change the attribute
 update the set of certificates:
 some failure times of later events might change
 some certificates may need to be deleted
 maybe, some new certificates need to be created

Performance measures
Responsiveness:
A KDS is responsive, if the cost to update the set of certificates and the attribute in
case of an event is “small” Usually, "small" means or

Efficiency:
A KDS is efficient, if the ratio of is small, I.e., the #(internal events),

i.e. the attribute's combinatorial structure does not change, is small, I.e., the #events is
comparable to the #(attribute changes) over time

Compactness:

O(log n)S O(n)ϵ

#(external events)
#(total events)

Kinetic Data Structures 3

A KDS is compact, if the number of certificates is close to linear in the number of input
object

Locality:
A KDS is local, if all objects participate only in a small number of certificates one
advantage: if an object changes its flight path, then the cost for updating all events
affected by it is not too high

Kinetic bounding volume hierarchies
Unlike traditional bounding volume hierarchies (BVH), which are static and designed for
stationary objects, KBVHs handle objects that change their position or shape over time.

In a KBVH, the bounding volumes of objects are organized in a hierarchical manner to
facilitate efficient collision detection and spatial queries. The hierarchy is typically
constructed using a top-down approach, where a recursive partitioning process
subdivides the space into smaller regions and assigns bounding volumes to each
partition. This process continues until each bounding volume contains a manageable
number of objects or reaches a specified depth limit.

The main challenge in constructing a KBVH lies in efficiently updating the hierarchy as
the objects move. When an object changes its position or shape, the hierarchy needs to
be modified to reflect the new spatial relationships.

One common approach to updating a KBVH is to use a combination of spatial and
temporal coherence. Spatial coherence takes advantage of the fact that nearby objects
tend to remain close to each other, reducing the amount of tree reconstruction required.
Temporal coherence exploits the fact that object motion is often smooth and predictable
over short time intervals, allowing for incremental updates that reuse parts of the
existing hierarchy.

Kinetic segment tree

Segment tree
a balanced binary tree over all the elementary intervals (see stabbing query problem,
the points where ranges begins or ends) where the leaves contains the elementary

Kinetic Data Structures 4

intervals and the inner nodes contains the space from interval to interval. more each
node store a set of all the segments that are contained in its children’s intervals

Construction

def buildSegmentTree():
 sort the endpoints in x
 construct skeleton tree over 2n+1 leaves
 for all nodes v bottom up:
 compute interval of v
 for all segments s in S:
 shift s through the tree

stabbing query

def query(v, q):
 if v is leaf:
 return
 if q in int(v1)
 query(v1, q)
 else:
 query(v1, q)

complexity: space and time, given output segmentsO(n log n) O(k + log n) k

Kinetic Data Structures 5

adding the kinetic part
to make a kinetic segment tree we augment the standard one to store the endpoints in
an array and we denote the segment

 are indicies into the array of the segments, called ranks, so a segment
whould be . we will also maintain a list of
pointers to the nodes it is stored, “fragment list” and an array with pointers to
leaves for the elementary intervals . the certificates are ,
when this is violated it means that 2 endpoints has swapped their order so our intervals
becomes

def update()
 init v = v_j #leaf for EI(j, j+1)
 m= sibling of v
 while s in S(m):
 delete s from S(m)
 v = parent(v)
 m = sibling of v
 add s to S(v)

Lemma
given a set s of n moving segments there is a KST with size, which
can be modified in time in case of a certificate failure. the worst case update time
is and the KST is local and efficient

proof
expected time: is the height of the highest node such that is
the right most end of

let’s claim , this is a operation, so the running time follows

directly

cool material

R[0,…,2n− 1] s =i (a , b), 0 ≤i i a , b ≤i i

2n− 1 ∈ N R

s =i [R[a],R[b]]i i L(s) = {ν∣s ∈ S(ν)}
A νi

(i, i + 1) R[i] < R[i + 1]

s = (i, j) → s = (i, j + 1)

⊆ R O(n log n)
O(1)

O(log n)

h ≤ h(j) ν (j, j + 1)
int(ν)

=h̄ h(j)2n
1

j=0
∑
2n

O(1)

Kinetic Data Structures 6

https://cp-algorithms.com/data_structures/segment_tree.html#:~:text=A Segment Tree
is a,quick modification of the array.

https://www.geeksforgeeks.org/segment-tree-sum-of-given-range/

https://cp-algorithms.com/data_structures/segment_tree.html#:~:text=A%20Segment%20Tree%20is%20a,quick%20modification%20of%20the%20array
https://www.geeksforgeeks.org/segment-tree-sum-of-given-range/

